skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barbosa, Manuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the past three decades, an impressive body of knowledge has been built around secure and private password authentication. In particular, secure password-authenticated key exchange (PAKE) protocols require only minimal overhead over a classical Diffie-Hellman key exchange. PAKEs are also known to fulfill strong composable security guarantees that capture many password-specific concerns such as password correlations or password mistyping, to name only a few. However, to enjoy both round-optimality and strong security, applications of PAKE protocols must provide unique session and participant identifiers. If such identifiers are not readily available, they must be agreed upon at the cost of additional communication flows, a fact which has been met with incomprehension among practitioners, and which hindered the adoption of provably secure password authentication in practice. In this work, we resolve this issue by proposing a new paradigm for truly password-only yet securely composable PAKE, called bare PAKE. We formally prove that two prominent PAKE protocols, namely CPace and EKE, can be cast as bare PAKEs and hence do not require pre-agreement of anything else than a password. Our bare PAKE modeling further allows to investigate a novel “reusability” property of PAKEs, i.e., whether n^2 pairwise keys can be exchanged from only n messages, just as the Diffie-Hellman non-interactive key exchange can do in a public-key setting. As a side contribution, this add-on property of bare PAKEs leads us to observe that some previous PAKE constructions relied on unnecessarily strong, “reusable” building blocks. By showing that “non-reusable” tools suffice for standard PAKE, we open a new path towards round-optimal post-quantum secure password-authenticated key exchange. 
    more » « less
  2. Malkin, T. (Ed.)
  3. null (Ed.)
    Computer-aided cryptography is an active area of research that develops and applies formal, machine-checkable approaches to the design, analysis, and implementation of cryptography. We present a cross-cutting systematization of the computer-aided cryptography literature, focusing on three main areas: (i) design-level security (both symbolic security and computational security), (ii) functional correctness and efficiency, and (iii) implementation-level security (with a focus on digital side-channel resistance). In each area, we first clarify the role of computer-aided cryptography---how it can help and what the caveats are---in addressing current challenges. We next present a taxonomy of state-of-the-art tools, comparing their accuracy, scope, trustworthiness, and usability. Then, we highlight their main achievements, trade-offs, and research challenges. After covering the three main areas, we present two case studies. First, we study efforts in combining tools focused on different areas to consolidate the guarantees they can provide. Second, we distill the lessons learned from the computer-aided cryptography community's involvement in the TLS 1.3 standardization effort. Finally, we conclude with recommendations to paper authors, tool developers, and standardization bodies moving forward. 
    more » « less
  4. Micciancio, Daniele; Ristenpart, Thomas (Ed.)
    Protocols for password authenticated key exchange (PAKE) allow two parties who share only a weak password to agree on a cryptographic key. We revisit the notion of PAKE in the universal composability (UC) framework, and propose a relaxation of the PAKE functionality of Canetti et al. that we call lazy-extraction PAKE (lePAKE). Our relaxation allows the ideal-world adversary to postpone its password guess until after a session is complete. We argue that this relaxed notion still provides meaningful security in the password-only setting. As our main result, we show that several PAKE protocols that were previously only proven secure with respect to a “game-based” definition of security can be shown to UC-realize the lePAKE functionality in the random-oracle model. These include SPEKE, SPAKE2, and TBPEKE, the most efficient PAKE schemes currently known. 
    more » « less
  5. We present a high-assurance and high-speed implementation of the SHA-3 hash function. Our implementation is written in the Jasmin programming language, and is formally verified for functional correctness, provable security and timing attack resistance in the EasyCrypt proof assistant. Our implementation is the first to achieve simultaneously the four desirable properties (efficiency, correctness, provable security, and side-channel protection) for a non-trivial cryptographic primitive. Concretely, our mechanized proofs show that: 1) the SHA-3 hash function is indifferentiable from a random oracle, and thus is resistant against collision, first and second preimage attacks; 2) the SHA-3 hash function is correctly implemented by a vectorized x86 implementation. Furthermore, the implementation is provably protected against timing attacks in an idealized model of timing leaks. The proofs include new EasyCrypt libraries of independent interest for programmable random oracles and modular indifferentiability proofs. 
    more » « less